5,460 research outputs found

    A novel perspective suggesting high sustained energy expenditure may be net protective against cancer

    Get PDF
    Energy expenditure (EE) is generally viewed as tumorigenic, due to production of reactive oxygen species (ROS) that can damage cells and DNA. On this basis, individuals within a species that sustain high EE should be more likely to develop cancer. Here, we argue the opposite, that high EE may be net protective effect against cancer, despite high ROS production. This is possible because individuals that sustain high EE have a greater energetic capacity (=greater energy acquisition, expenditure and ability to up-regulate output), and can therefore allocate energy to multiple cancer-fighting mechanisms with minimal energetic trade-offs. Our review finds that individuals sustaining high EE have greater antioxidant production, lower oxidative stress, greater immune function and lower cancer incidence. Our hypothesis and literature review suggest that EE may indeed be net protective against cancer, and that individual variation in energetic capacity may be a key mechanism to understand the highly individual nature of cancer risk in contemporary human populations and laboratory animals. Lay summary The process of expending energy generates reactive oxygen species that can lead to oxidative stress, cell and DNA damage, and the accumulation of this damage is thought to be a major contributor to many ageing related diseases that include cancer. Here, we challenge this view, proposing how and why high energy expenditure (EE) may actually be net protective against cancer, and provide literature support for our hypothesis. We find individuals with high sustained EE have greater energetic capacity and thus can invest more in repair to counter oxidative stress, and more in immune function, both of which reduce cancer risk. Our hypothesis provides a novel mechanism to understand the highly individual nature of cancer, why taller individuals are more at risk, why physically active individuals have lower cancer risk, and why regular exercise can reduce cancer risk

    Darwin, the devil, and the management of transmissible cancers

    Get PDF
    Modern conservation science frequently relies on genetic tools to manage imperiled populations threatened by processes such as habitat fragmentation and infectious diseases. Translocation of individuals to restore genetic diversity (genetic rescue) is increasingly used to manage vulnerable populations, but it can swamp local adaptations and lead to outbreeding depression. Thus, genetic management is context dependent and needs evaluation across multiple generations . Genomic studies can help evaluate the extent to which populations are locally adapted to assess the costs and benefits of translocations. Predicting the long‐term fitness effects of genetic interventions and their evolutionary consequences is a vital step in managing dwindling populations threatened by emerging infectious diseases

    Genetic noise control via protein oligomerization

    Get PDF
    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Here we have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise

    Detection of Aspergillus-specific antibodies by agar gel double immunodiffusion and IgG ELISA in feline upper respiratory tract aspergillosis.

    Get PDF
    Highlights: Feline antibodies against cryptic Aspergillus spp. cross react with an aspergillin containing A. fumigatus antigens. • Brachycephalic cats are prone to upper respiratory tract aspergillosis (URTA). • The agar gel immunodiffusion (AGID) assay has low sensitivity for diagnosis of URTA. • IgG ELISA has high sensitivity and specificity for diagnosis of URTA. • This study provides evidence that cats with URTA are systemically immunocompetent. Abstract Feline upper respiratory tract aspergillosis (URTA) is an emerging infectious disease. The aims of this study were: (1) to assess the diagnostic value of detection of Aspergillus-specific antibodies using an agar gel double immunodiffusion (AGID) assay and an indirect immunoglobulin G (IgG) ELISA; and (2) to determine if an aspergillin derived from mycelia of Aspergillus fumigatus, Aspergillus niger and Aspergillus flavus can be used to detect serum antibodies against cryptic Aspergillus spp. in Aspergillus section Fumigati. Sera from cats with URTA (group 1: n = 21) and two control groups (group 2: cats with other upper respiratory tract diseases, n = 25; group 3: healthy cats and cats with non-respiratory, non-fungal illness, n = 84) were tested. Isolates from cats with URTA comprised A. fumigatus (n = 5), A. flavus (n = 1) and four cryptic species: Aspergillus felis (n = 12), Aspergillus thermomutatus (Neosartorya pseudofischeri, n = 1), Aspergillus lentulus (n = 1) and Aspergillus udagawae (n = 1). Brachycephalic purebred cats were significantly more likely to develop URTA than other breeds (P = 0.013). The sensitivity (Se) of the AGID was 43% and the specificity (Sp) was 100%. At a cut-off value of 6 ELISA units/mL, the Se of the IgG ELISA was 95.2% and the Sp was 92% and 92.9% for groups 2 and 3 cats, respectively. Aspergillus-specific antibodies against all four cryptic species were detected in one or both assays. Assay Se was not associated with species identity. Detection of Aspergillus-specific antibodies by IgG ELISA has high Se and Sp for diagnosis of feline URTA. Keywords: Aspergillosis; Aspergillus spp; Sino-nasal; Sino-orbital; Felinefunded by an Australian Companion Animal Health Foundation grant (015/201

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
    corecore